<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-4 (Reasoning in Algebra)

Geometric proof premises	 Postulates Prev acception 	ndefn'd terms (points for instance) ted or proven geom. conjectures (theorems) gebra (equality & congruence)
Be a lawyer	Convince jury	is like being a lawyer in court point with facts and evidence
Math proof evidence	Geometric proof premises (see top of notes page) Must have these down pat! Jury won't believe us if we keep saying "wait; let me look that up" *** KEEP LISTS UP-TO-DATEMEMORIZE ***	
Properties of equality	*** MUST KNOW THESE ***	
	Addition:	If $a = b$, then $a + c = b + c$
	Subtraction:	If $a = b$, then $a - c = b - c$
	Multiplication	$: \text{ If } \boldsymbol{a} = \boldsymbol{b}, \text{ then } \boldsymbol{a} \cdot \boldsymbol{c} = \boldsymbol{b} \cdot \boldsymbol{c}$
	Division:	If $a = b$ and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$ a = a
	Reflexive:	a = a
		If $a = b$, then $b = a$
	Transitive:	If $a = b$ and $b = c$, then $a = c$
	Substitution:	If $a = b$, then b can be replaced by a in any expression
Properties of algebra	Any known property of algebra is true Distributive Property: $a(b + c) = ab + ac$	
Extremely Important	***KEEP LI	STS UP-TO-DATEMEMORIZE***

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-4 (Reasoning in Algebra)

How to justify a step in algebra proof	 Consider what chg'd from prior step: 1. if chgs all on 1 side: Simplified Substitution Prop of Equality Distributive Prop of Algebra 2. if chgs on both sides: ID operation performed +, -, ×, ÷ Will tell what Prop of Equality was used 		
Example	Pg 90, Example #1 Solve for x and justify each step. Given: $m\angle AOC = 139$		
	$m\angle AOB + m\angle BOC = m\angle AOC$ Angle Addition Postulate x + 2x + 10 = 139 Substitution Prop (on 1 side) 3x + 10 = 139 Simplify (all on 1 side) 3x = 129 Subtr Prop of Eq (-10 ea side) x = 43 Div Prop of Eq (÷3 ea side)		
Example	Pg 90, Check Understanding #1 Fill in each missing reason. Given: \overrightarrow{LM} bisects $\angle KLN$ \overrightarrow{LM} bisects $\angle KLN$ Given $m\angle MLN = m\angle KLM$ Definition of angle bisector 4x = 2x + 40 Substitution (all on 1 side) 2x = 40 Subtr Prop of Eq (-2x ea side) x = 20 Div Prop of Eq (÷2 ea side)		

<name> Class: Honors Geometry Date: 9/14/06 Topic: Lesson 2-4 (Reasoning in Algebra)

Example	Example – not in book – Solve for x and justify each step. Given: $5x - 12 = 32 + x$		
	5x - 12 = 32 + x Given 5x = 44 + x Add Prop of Eq (+12 ea side) 4x = 44 Subtr Prop of Eq (-x ea side) x = 11 Div Prop of Eq (÷4 ea side)		
Properties of congruence	Reflexive: $\overline{AB} \cong \overline{AB}$ $\angle A \cong \angle A$		
	Symmetric: If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$ If $\angle A \cong \angle B$, then $\angle B \cong \angle A$		
	Transitive: If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$ If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$		
Example	Pg 91, Check Understanding #3 Name the property of equality or congruence illustrated.		
	a) $\overline{XY} \cong \overline{XY}$ Reflexive Property of Congruence		
	b) If $m \angle A = 45$ and $45 = m \angle B$, then $m \angle A = m \angle B$ Transitive Property of Congruence or Substitution Prop of Congruence		
Example	Example – not in book Name the property that justifies each statement. a) If $x = y$ and $y + 4 = 3x$, then $x + 4 = 3x$ Substitution Prop of Equality		
	b) If $x + 4 = 3x$, then $4 = 2x$ Subtraction Prop of Equality		
	c) If $\angle P \cong \angle Q$ and $\angle Q \cong \angle R$ and $\angle R \cong \angle S$, then $\angle P \cong \angle S$ Transitive Prop of Congruence		